Paleohydrological evolution during the Late Glacial based on compound-specific δ^2 H and δ^{18} O analyses from Bichlersee, Bavarian Alps

M. Prochnow¹, M. Bliedtner¹, P. Strobel¹, J. Struck¹, L. Bittner², H. Schneider¹, S. Acharya¹, M. Zech² & R. Zech¹

Physical Geography, Department of Geography, Friedrich Schiller University Jena, DE ² Heisenberg-Chair for Physical Geography, Department of Geography, Technical University Dresden, DE

Correspondence to: Maximilian Prochnow (e-Mail: maximilian.prochnow@uni-jena.de)

Introduction

- The European Alps experienced major climatic and environmental changes during the Bølling-Allerød (BA) and the Younger Dryas (YD) (~14.7 until ~11.7 ka BP)
- Stable isotopes (i. e. δ^{18} O) from lake sediments

Biomarkers and their stable isotope signal

Sources of *n*-alkanes and hemicellulose sugars

and speleothems are mainly interpreted to reflect temperature due to similarities with Greenland δ^{18} O records, but disentangeling various effects on single isotope records is difficult

 \rightarrow We test the potential of $\delta^2 H_{n-alkane}$ and $\delta^{18} O_{sugar}$ analyses on lake sediments from Bichlersee for quantitative paleohydrological reconstructions

Study site

 $n-C_{27}$: produced by trees (i. e. *Betula pendula*) \rightarrow transpirative enrichment of leaf water – or a mixed terrestrial/aquatic compound \rightarrow lake water?? (e. g. Andrae et al. 2020)

▲ Figure 3

Samples show high contributions of fucose and xylose, but low amounts of arabinose \rightarrow sugars mostly of aquatic origin $\delta^{18}O_{sugar}$ reflects the $\delta^{18}O$ signal of lake water \rightarrow evaporative enrichment

(a) Correlation matrix (Pearson r) for the relative abundance of n-alkanes. (b) Ternary diagram of relative abundances of arabinose, fucose and xylose in the Bichlersee samples (red dots) and data from the literature: emergent/terrestrial plants from Bichlersee (Hepp et al., 2016), Panch Pokhari (Zech et al., 2014), Tumara Loess (Zech et al., 2013) and Gemündener Maar (Hepp et al., 2019).

$\delta^2 H_{n-alkane}$ and $\delta^{18} O_{sugar}$ and their paleoclimatic implications

• $\delta^2 H_{\rho-C31}$: decreasing during BA and YD, increasing during the Younger Dryas-Holocene transition \rightarrow Likely reflects changes in isotopic composition of precipitation

	Bølling-Allerød	Younger Dryas	Holocene
、-160] (a)			I

▲ Figure 1

(a) Topographic overview map of the study area (DEM: EuropeDEM v1.1). (b) Photograph of Bichlersee with the forested Wildbarren in the background.

Lithology and chronology

- $\delta^2 H_{n-C27}$: somewhat enriched compared to $\delta^2 H_{n-C31}$ \rightarrow leaf and/or lake water enrichment
- $\delta^2 H_{n-alkane}$ from Bichlersee is similar with Meerfelder Maar (Rach et al., 2014)
- $\delta^2 H_{n-alkane}$ roughly follows the pattern of $\delta^{18} O_{ostracod}$ from Mondsee (Lauterbach et al., 2011)
- $\delta^{18}O_{sugar}$ enriched during the BA, depleted at the onset of YD, then increasingly and strongly enriched \rightarrow Variable lake water enrichment, probably related to summer temperature

▲ Figure 4

(a) $\delta^2 H_{n-alkane}$ of $n-C_{27}$ and $n-C_{31}$ from Bichlersee and (b) $\delta^{18} O_{sugar}$ data illustrating lake water enrichment during the Late Glacial. (c) $\delta^2 H_{n-alkane}$ data from Meerfelder Maar with $n-C_{23}$ as an aquatic and $n-C_{29}$ as an terrestrial compound (Rach et al., 2014). Grey arrows indicate amplitude of enrichment. (d) $\delta^{18}O_{ostracod}$ data from Mondsee (Lauterbach et al., 2011). This signal is interpreted to reflect the isotopic composition of precipitation (modulated by temperature effects).

Take-Home-Messages

• The effect of lake water enrichment should be considered when reconstructing paleohydrology using stable isotopes from lake sediments

▲ Figure 2

Core photograph, age depth model and results of geochemical analyses (TOC, log Ti) for the Late Glacial–Early Holocene part of our core from Bichlersee.

• δ^{18} O is much more sensitive to evaporative enrichment than δ^{2} H, so more δ^{18} O_{sugar} analyses are recommended

References

Andrae et al. (2020): Carbon isotope systematics of leaf wax n-alkanes in a temperate lacustrine depositional environment. Org. Geochem. 150; Hepp et al. (2016): A sugar biomarker proxy for assessing terrestrial versus aquatic sedimentary input. Org. Geochem. 98; Hepp et al. (2019): How dry was the Younger Dryas? Evidence from a coupled $\delta^2 H - \delta^{18} O$ biomarker paleohygrometer applied to the Gemündener Maar sediments, Western Eifel, Germany. Clim. Past 15. Lauterbach et al. (2011): Environmental responses to Lateglacial climatic fluctuations recorded in the sediments of pre-Alpine Lake Mondsee (northeastern Alps). JQS 26. Rach et al. (2014): Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe. *Nature Geosci*. 7; Zech et al. (2013): A 220ka terrestrial δ^{18} O and deuterium excess biomarker record from an eolian permafrost paleosol sequence, NE-Siberia. *Chem. Geol.* 360-361; Zech et al. (2014): A 16-ka δ^{18} O record of lacustrine sugar biomarkers from the High Himalaya reflects Indian Summer Monsoon variability. *Journ. Paleolimn.* 51.

